Pandas DataFrames
Estimated reading: 2 minutes
577 views
What is a DataFrame?
A Pandas DataFrame is a 2 dimensional data structure, like a 2 dimensional array, or a table with rows and columns.
Example
Create a simple Pandas DataFrame:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
#load data into a DataFrame object:
df = pd.DataFrame(data)
print(df)
Locate Row
As you can see from the result above, the DataFrame is like a table with rows and columns.
Pandas use the loc
attribute to return one or more specified row(s)
Example
Return row 0:
#refer to the row index:
print(df.loc[0])
#Example
#Return row 0 and 1:
#use a list of indexes:
print(df.loc[[0, 1]])
Named Indexes
With the index
argument, you can name your own indexes.
Example
Add a list of names to give each row a name:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
print(df)
Locate Named Indexes
Use the named index in the loc
attribute to return the specified row(s).
Example
Return “day2”:
#refer to the named index:
print(df.loc["day2"])